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MARKOVIAN SEQUENTIAL CONTROL PROCESSES--

DENUMERABLE STATE SPACE

Cyrus Derman

Columbia University

1. Introduction

As in [41, [51, [61 we are concerned with a dynamic

system which is observed periodically and classified into

one of a number of possible states. After each observation

one of a possible number of decisions is made. The

decisions determine the chance laws of the system.

Previously, our considerations were confined to finite

state spaces; here, we allow the number of possible states

to be infinite.

Let I denote the state space of the system.

Throughout, wi shall assume I to be denumerable, though

with suitable modifications our theorem below remains

1 Work sponsored by the Office of Naval Research under

contract Nonr 266(55).



2.

valid for a general state space. Whenever the system is
in state i (iEI) there are Ki possible decisions. Denoting

by fir} , t=Otl,..., the sequence of states and by

{At} I t=O,1,.... the sequence of decisions, we assume
that

(M) P fYt-.l = j  St-l' Yt a i, At = k} = qij(k)

for k-l,...,Ki iij EI; t=Ol,,... where, for each t,

s t denotes the history of states and decisions (i.e..

at = {Yo M YO' AO = d' 0 "'' Yt = Yt, At = t}) and the

qij (k)'s are non-negative numbers such that

qij(k) - 1 , k=l.....Ki; iEI.

jE!

Ronghly speaking, a rule R for sequentially

controlling the process is a well-defined procedure which

specifies the decision to be made at each point in time

as a function of the history of the system. nore precisely,

we say R is a set of non-negative functions {Dk(st.-l yt)}
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where for each t (t=O,,...) the domains of definition

are the possible values of st_- , yt and k and such that

D(. = 1
k

we define

P I ht = k I st_ I , Yt - Yt }:Dk(St-l' Yt )

for all k=l,...,Kyt , s t- Yt- and t=Ol,... That is,

we allow decisions to be made by a random mechanism, the

mechanism used to depend on the history of the system.

We denote by Q. the class of all rules R. Once

initial probabilities P {Yo = i}, iEI, are given and a

rule REQ is specified, the sequences {Yt} and f{t° At}e

t-O0*1...°. are stochastic processes. We shall call the

process {It At} a Markovian sequential control process.

It is not true that {Yt} or even {," t , At} will always

be Markovian; whether they are or not will depend on the

rule R. IVowever, we use th. term Markovian because of

assumption M which irposes a kind of Markovian structure
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on our processes. Such processes are a natural outgrowth

of the dynamic programming point of view and the theory

of Markov Chains. They were first discussed by Bellman

(see e.g., [11 and [21 and also [41, [51, and [61 for

other references.). Set

Pt(j.k I i.R) = P(Yt = j, = k I Y0 = i0R)

and let for any a, 0 < a < 1, iEI

,(ii. .R) = t Pt(j.k I iR) wjk

t=0 jk

where {wjk} are given numbers. *(i,..R) can be thought

of as the expected discounted cost over an infinite horizon

of operating the system using rule R, given that i is the

initial state and Wik denotes the cost incurred whenever

the system is in state j and decision k is made.

A question of concern is whether, for any given

a and i, there exists a rule PQE, such that
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(i,a,R0)= min *(ia,R).
RE ,

Conditions will be given which assure existence of such

an optimal rule. It then follows that there is a non-

randomized stationary rule which is optimal over R. By

a stationary rule we mean F rule such that

Dk(St-l. Yt i) = Dik

for every t=Ol,.... k=l,...,K i, and iEl. A non-randomized

rule has its Dk(...)'s either zero or one. Thus a non-

randomized stationary rule is such that there is one

decision associated with each state and that decision is

made each time the system is observed to be in that state.

2. Existence Theorem

Our result concerning the discounted cost criterion

can be summarized as follows:
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Theorem: If K. < w for each iEI and fw jk is bounded,

then for a given a(O < a < 1) there exists a non-randomized

stationary rule R such that

*(i,c,R 0 ) = min *(i,a,R) , iEI
RE.

Proof: The proof will fall into two parts: the first

to show the existence of an optimal rule and the second

to show that it can be taken to be a non-randomized

stationary rule. The former, following the remarks of

Karlin [71. involves showing that 9 is a compact space

and *(i,GaR) is a continuous function over R. The latter

makes use of a device employed by Blackwell [31 in a

similar proof for the case of a finite number of states.

If for a fixed n the collection of non-negative

functions {Dk(n)(.,.)} is rule RhEa0 we say that

lim Rn - RER if lim Dk(n)(.,.) D(.,.) where f(.0.)
n-0mnc

is the collection of non-negative functions constituting

the rule R. In the following we arbitrarily set



P (Y 0 =i iEI

where Bi > 0, and 1 .= 1.

iEI

First we have, as pointed out by Karlin [71,

Lemma 1. If Ki < - for each iEI, then R is compact.

Proof: For a fixed t, s t_ , and Yt, the space consisting

of the possible points

D(t) (st-l.Yt) = {D,(St_,,yt)...., D, t (st_,.yt)}

is compact since Kyt < C. By Tychonoff's theorem ([81

p. 260) the product space,

D(t) = T7 D(t)(stl.Yt)}

is compact; and again by the same theorem, the space
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D ~tD

is compact. However, D is the space R of all rules.

Hence, Q is compact.

Secondly, we shall prove

Lemma 2. Under the conditions of theorem 1, if lim R n =REQ

then for each t, t=0,1,...

lim X 1 P Pt(j~k I iRn) w jk
n-0c iEI j,k

= -, Pi Pt(j,k I i,R) w jk
iEI j~k

conseqently__,_ P *(i,ax,R) for fie (O < )i

iE I
continuous over R.

Proof: We can write for any Rn,i~j,k and t
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Pt(j~k I i,Rn) -ZP(Ytj, 6tk, St- I Yoi, R n)
st-i

= P(6tak I y0=i, St1 Y=j, Rn) P(ytgj, stl Y0=iR)

8t-1 
n

I D Dk (n)(sti.~yt=j) P(yt~jI Yo~i, st_, Rn)

a t-i

.P(sti1 I Yo-i R n

- .Dk(n)(stl. Ytj qylj(t) P(st-1I Y0=i, R)

y1 0
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However, since for any RER

Pt(j k I i,R) = 1

j,k

and the Dk(n)(.,.)'s converge, it follows from a theorem

due to Scheffe [91 that

lim Pt( j k I i,R n )  Pt( j k I i,R)
n- *L L

j,kEE j,kEE

for any set E in the space of possible states and decisions.

However, since {wjk} is bounded, the lemma follows using

standard arguments.

We remark that since PiPt(jk I i,R) Wik

iEI j,k

is bounded as well as continuous, it follows that for

fixed a(0 < a < 1)



Pi *(i,ca,R) ' Pi ~~ Pt(jik I iR) Wi k

iEI t=O iEI j,k

is also continuous over R.

Combining lemmas 1 and the above remark we have

Lemma 3: Under conditions of theorem 1, for a g~iven

a(O <~ a<1) there exists a rule R*ER such that

*(i,a.,R*) = min *(i,cL,R) i4-I
RE Q

Proof: From the well-known fact that a continuous function

achieves its minimum over a compact space we have from

lemma 1 and the remark after lemma 2 that there exists

a rule R* such that

~.*(i,ca,R*) = min *(p c,

iEI RqiEI

However, suppose that Pi's are chosen so that Pi> 0,
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iEI then R* must be as asserted in the lemma. For other-

wise we could construct a different rule which would

provide a smaller values of * i *(i,a,R).

iEI

We now proceed to the second part of the proof

of the theorem; namely, to show that there exists a non-

randomized stationary rule R0 such that

*(, ,R (i,i,,R , iEI ,

where R* is as in lemma 3.

Following Blackwell [31, if D denotes the set of

numbers {dik}, dik 0, ' dik= 1, iEI, then let R, = (D,R*)

k

denote the rule:

Dk(YO , i) = dik k=l,...,K i, iEI

followed by use of the rule R* for the process
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N 1= Y}' t=l,... .More generally, let

Rn = {D,...D, R*} denote the rule:

Dk(st-l' Yt i) dik, k=l,...,K i , iEI, 0 < t < n

followed by use of the rule R* for the process ytn)

A (n) AtI' t=n, ....

Let {dik} be chosen so that, for each iEI,

dik Wik + L q (k) dik ,R*)
k j,k d ,

is minimized. Clearly, the minimizing values can be

taken to be zero or one. From such a choice of

D = {dik}, it is easily seen that, for n=l,2,...,

(i,,Rn) = *(i,cl,R*) , iEI.
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Moreover, lim Rn = RO , the non-randomized stationary rule
n-.w

with {Dik} = D. However, by lemma 2, *(i,.,R) is con-

tinuous over R; hence

*(i,a,R0 ) =lim *(i*aRn)

= *(~ct,*) ,iEI

This last equation establishes the theorem.

3. Counter-Example

There is no difficulty in providing an example
in which the condition of finiteness of the Ki s is

violated and the conclusion of the theorem does not

hold.

The following example shows that the theorem

may not hold if the boundedness condition on {wjk} is

weakened. Let I consist of the states 0, 1 1b 2a

2, and suppose there are two possible decisions
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at states 1a f 2,... and only one possible decision at

states 0, b, 2 b .... Assume that

qo(l) = 1, g.b (1) = 1 i=1,2,...

qi (i+l) (1) = p qi o( I ) -p, i=1,2,...,

gia,(2) 1 i1,2,...;

Woi0-wl) i=1,2,...b1 (0p) i- I

W1 = W 2= - 1 i=l,2,...
a a (2p)i-1

Let P = a) = . If Rn denotes the rule: Make decision

I for all t < n; if Yn = (n+l)a make decision 2 at

t = n. Then, on computing *, we get
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*(la,,Rn) = Wla1 + Wpw2a1 + ... + (p)nw(n+l)a 2 +

anP~ aa

i-(X W(n+l)b I

r 1 +-+ . + + a n
2 2n

Thus lim *(la,,Rn) = - . However, every RER will clearly
n-co

yield a finite value for *(lal,R). Thus no optimal rule

exists.

4. Remarks

Of interest are conditions under which the assertion

of the theorem holds when * is replaced by

1P

QR(i) = lm sup T Pt('k 1 iR) wjkT-mt=1 j,k
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When the limit exists this is usually referred to as the

average cost per unit time. It was shown in [41 that

the theorem holds when I is finite. However, a proof in

the denumerable case has not been given and it is not

entirely clear that it is true, not withstanding the

usual intuitive arguments.

For I finite, Blackw .ll [31 obtained a stronger

result. He showed there exists a non-randomized stationary

rule R0 such that

*(i,a,R 0 ) = min *(i,a,R) iEI
REQ*

for every a near enough but less than one. R* is the class

of all rules whose decisions at time t depend only on the

state Yt and t. However, from the above result it is clear

that Q* can be replaced by Q. A counter-example1 appears

in the doctoral thesis of Ashok Maitra (Department of

Statistics, University of California, Berkeley) indicating

that the result does not extend to the denumerable case.

------------------------------

Communicated to me by David Blackwall.
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